top of page

ChatGPT火爆出圈 生成式AI平台谁主沉浮?(三)

来源:华尔街见闻

模型提供商发明了生成式AI 但尚未实现大规模商业化

如果没有谷歌、OpenAI和Stability.AI等公司奠定了杰出的研究和工程基础,我们现在所说的生成式AI将无从存在。创新的模型架构和不断扩展的训练管道使我们均受益于大语言模型(LLMs)和图像生成模型的“超能力”。

然而,这些公司的收入规模在其用量和热度面前似乎不值一提

在图像生成方面,得益于其用户界面、托管产品和微调方法组成的操作生态,Stable Diffusion已经见证了爆炸性的社区增长。但Stability仍将免费提供其主要检查点作为核心业务宗旨(愿景是开源)。

在自然语言模型中,OpenAI以GPT-3/3.5和ChatGPT占据主导地位,但到目前为止,基于OpenAI构建的杀手级应用仍相对较少,而且其API定价已经下调过一次。

这可能只是一个暂时的现象。Stability.AI仍是一家尚未专注于商业化的新兴公司,随着越来越多杀手级应用的构建——尤其当它们被顺利整合进微软的产品矩阵,OpenAI也有成长为庞然大物的潜力,届时将吃走NLP领域一块很大的蛋糕。当模型被大量使用,大规模的商业化自然水到渠成

但阻力依然存在。开源模型可以由任何人托管,包括不承担大模型训练成本(高达数千万或数亿美元)的外部公司。是否有闭源模型可以长久地保持其优势目前还是未知数。

我们看见由Anthropic、Cohere和Character.ai等公司自行构建的大语言模型开始崭露头角,这些模型和OpenAI基于类似的数据集和模型架构进行训练,在性能上已经逼近OpenAI。但Stable Diffusion的例子表明,如果开源模型拥有足够高的性能水平和充分的社区支持,那么闭源的替代方案将难以与其竞争。

如今,对专有API(如OpenAI)的需求正在迅速增长,托管可能是目前对模型提供商而言最明确的商业化路径。

开源模型托管服务(如Hugging Face和Replicate)正在成为便捷地分享和集成模型的有效枢纽——甚至在模型提供者和消费者之间产生了间接的网络效应。模型提供商通过模型微调和与企业客户签订托管协议来变现,看上去是十分可行的。

除此之外,模型提供商将面临的主要问题还包括:

  • 商品化:人们普遍认为,AI模型的性能将随时间推移趋于一致。在与应用开发者的交谈中,我们可以确定这种情况尚未发生,在文本和图像模型领域都还存在实力强劲的领跑者。它们的优势并非基于独特的模型架构,而是源自大量的资本投入、专有的交互数据沉淀和稀缺的AI人才。但这些会是持久的优势吗?

  • 客户流失:依赖模型提供商是应用类公司起步甚至(早期)发展业务的绝佳方法。但当业务达到一定体量,这些公司就有动力构建或托管它们自己的模型。许多模型提供商的客户分布高度不均衡,少数应用贡献了绝大多数收入。一旦这些客户转向自研AI,对模型提供商将意味着什么?

  • 钱重要吗:生成式AI的未来是把双刃剑,前景无比光明却也潜在巨大危害,以至于许多模型供应商以共益企业(B corps)的模式组织成立,它们或发行有上限的利润份额,或以其他方式明确地将公共利益纳入公司使命。这些举措丝毫不影响它们融资。但此处有一个合理的争议——即多数模型提供商是否真的想要获取价值,以及它们是否应该这么做?

基础设施供应商触及一切 并采摘了果实

生成式AI中的近乎一切都会在某个时刻通过云托管的GPU(或TPU)。无论是对于训练模型的模型提供商和科研实验室、执行推理和微调任务的托管公司或是两者兼顾的应用程序公司,每秒浮点运算(FLOPS)都是生成式AI的命脉。这是很长时间以来第一次,最具颠覆性的计算技术的进步严重受限于计算量。

因此,生成式AI市场里的大量资金最终流向了基础设施公司。可以用一些粗算数字加以说明:

我们估计,应用程序公司平均将约20-40%的年收入用于推理和定制化的微调,这部分通常直接支付给云服务提供商以获取实例或支付给第三方模型提供商——相应地,这些模型提供商将大约一半的收入投入于云基础设施。

据此我们有理由推测,生成式AI总营收的10-20%将流向云服务提供商

除此之外,训练着自有模型的初创公司们已经筹集了数十亿美元的风险投资——其中大部分(早期阶段高达80-90%)通常也花在云服务提供商身上。许多上市科技公司每年在模型训练上花费数亿美元,它们要么与外部的云服务提供商合作,要么直接与硬件制造商合作。

这就是我们常说的“一大笔钱”——尤其是对于一个新兴市场而言。

其中大部分的钱都花在了三大云上:AWS、谷歌云(GCP)和微软Azure。三朵云每年花费超千亿美元的资本支出以确保它们拥有最全面、最可靠、最具成本优势的云平台。尤其在生成式AI领域,三朵云还受益于有限的供给,因为它们可以优先使用稀缺的硬件(如英伟达的A100和H100 GPU)。

眼下,我们看见该领域的竞争也开始出现。

甲骨文等挑战者已经通过巨额的资本支出和销售激励进军市场;一些提供针对大模型开发人员提供解决方案的初创公司,如Coreweave和Lambda Labs也正在快速发展,它们在成本、可用性和个性化支持上展开角逐。

此外,初创公司还公开更细粒度的资源抽象(即容器),而受限于GPU虚拟化,大型云厂商只提供虚拟机实例。

迄今为止,生成式AI领域最大的幕后赢家,可能是运行了绝大多数AI工作负载的英伟达(NVIDIA)。

该公司报告称,2023财年第三季度,其数据中心GPU的收入为38亿美元,其中相当一部分用于生成式AI用例。通过数十年对GPU架构的投资、产学研深入合作以及软硬件生态系统的构建,英伟达已围绕该业务建立了坚固的护城河。

最近一项分析发现,研究文献中引用英伟达GPU的次数是顶级AI芯片初创公司总和的90倍。

其他硬件选项确实存在,包括谷歌张量处理单元(TPU)、AMD Instinct GPU、AWS Inferentia和Trainium芯片,以及来自Cerebras、Sambanova和Graphcore等初创公司的AI加速器。后发者英特尔(Intel)也带着高端的Havana芯片和Ponte Vecchio GPU 进入了这个市场。但到目前为止,仍然鲜有新芯片能够占据可观的市场份额。

有两个例外值得关注,一个是谷歌,其TPU在Stable Diffusion社区和谷歌云平台的一些大型案例中表现出了巨大吸引力,另一个是台积电,据说它生产了以上所列举的所有芯片,包括英伟达的GPU(英特尔的芯片则由自有晶圆厂和台积电共同生产)。

换句话说,基础设施可能是整个技术栈中可持续获利且有壁垒的一层。基础设施供应商需要回答的主要问题包括:

  • 保持无状态工作负载:无论在哪里租用英伟达的GPU都是一样的。大多数AI工作负载是无状态的,从某种意义上说,模型推理无需附加的数据库或存储(除模型权重本身外)。这意味着AI工作负载可能比传统应用程序的工作负载更易于跨云迁移。在这种情况下,云服务提供商应如何创造用户粘性,防止客户转向便宜的选择?

  • 芯片荒终结后的较量:云服务提供商和英伟达产品的定价都是基于最理想的GPU目前供给稀缺。一位供应商告诉我们,A100的售价自发布以来有所上涨,这对于计算硬件而言是极不寻常的。若通过增加产量和/或采用新的硬件平台可最终消除芯片的供给限制,云服务提供商将受何影响?

  • 挑战者能否破局:我们坚信,垂直云将通过提供更加专业的服务从三朵云手中夺取市场份额。到目前为止,在AI领域,部分挑战者通过适度的技术差异化和英伟达的支持已经获得了一定的市场吸引力——对英伟达而言,现有的云服务提供商既是最大的客户,也是新兴的竞争对手。但长期的问题是,这些助力是否足以帮助新兴云厂商攻克三朵云的规模优势?



2023股市面临巨大风险,关注“一级市场”投资机会


我们特别邀请了中国第一个私人银行(北京商业银行)的发起人 - John Wang为我们一对一解析一级市场投资机会和风险 “一级市场”投资研讨,不对公众开放,仅限“实名”认证的注册会员


加入方式: 1, 微信: Vandave 2, WhatsApp: 604-7227628 3, 视频号: 时空“资升堂”联系在线客服

风险提示及免责条款

市场有风险,投资需谨慎。本文不构成个人投资建议,也未考虑到个别用户特殊的投资目标、财务状况或需要。用户应考虑本文中的任何意见、观点或结论是否符合其特定状况。据此投资,责任自负。

 

扫描二维码,入群看直播,或直接联系客服


 

 

免责声明

文章内容不代表本网站立场。 如有争议,请随时联系我们!

 

扫码关注我们吧

微信公众号|温渡传媒

资深媒体人|华美嘉

社群运营 · 融媒制作

公关策划 · 活动推广

商务合作:1-778-707-5568

Email:vandomediacorp@gm

ail.com

YouTuBe:https://www.youtube.com/vandomedia

Instagram:VandoMedia

Facebook:https://www.facebook.com/reneezhao716VOA



Comments


bottom of page